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TAU METHOD APPROXIMATION 
OF A GENERALIZED EPSTEIN-HUBBELL 

ELLIPTIC-TYPE ILNTEGRAL 

H. G. KHAJAH 

ABSTRACT. We consider the evaluation of a recent generalization of the Ep- 
stein-Hubbell elliptic-type integral using the tau method approximation with 
a Chebyshev polynomial basis. This also leads to an approximation of Lauri- 
cella's hypergeometric function of three variables. Numerical results are given 
for polynomial approximations of degree 6. 

1. INTRODUCTION 

The Epstein-Hubbell elliptic-type integral 
7r 

Qj(k)= j(1 -k2cosO)--1/2dtd, 0< k < 1,j= 0,1,2,.... 

occurs in connection with certain problems related to the computation of the radi- 
ation field off-axis from a uniform circular disk radiating according to an arbitrary 
angular distribution law [2, 5]. It has undergone a number of generalizations [1], 
the most recent of which was introduced by Kalla and Tuan [8] in the form 

A (ce 8/) (P, 6; k) 

JX (1 - k2 cos09)p+1/2 [1 - p sin2 (t9/2)]-A [1 + 6 cos2(09/2)] d, 

where 0 < k < 1. In this paper, the tau method is used to obtain polynomial 
approximations to the above integral when the parameters and exponents are real 
numbers1 such that a, 13 > 0; 161, Ip < 1. 

Introducing a new variable w = sin2 (t/2) transforms the above integr4al into the 
form 
(1) 

(A ))(p, 6; k) = (1 + 6)-(1 - k2)-l 1/2 j w0-(1 - w)a-1 v(w) dw, 

where v(w) is given by 

(2) v(w) = (1 - pw)- (1 - 6ow)- (1 -ko) 
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and 6o = 6(1 + 6), ko = 2k2/(k2 - 1) for 0 < k < 1. The function v(w) solves the 
linear differential equation 

(3) vDv := Po(w) v' -Pi (w)v = , v (O) = 1, 

with variable coefficients 

Po(w) = 1 - Aow + Bow2 - COW3 Pi (w) = A1 - B1w + C1w2, 

in which Ao = p + 6o + ko , Bo = p6o + pko + 60ko, Co = p6oko and 

A1 = Ap+ y6o + (t+ )ko, 

B1 = (A+-y)p6o+(A+u+ 1)pko+( y+u+ 1)6oko, 
C1 = (A+-y+tz+ )CO, 

The integral (1) is also expressed in terms of Lauricella's hypergeometric function 
of three variables F(3) (see [3] and [8]): 

(4) 
A ')) (p, 6; k) 

B(a, 13) (1 + 6)-(1 - k2)-1-1/2F(3) (/3 A, -y, At + 1; a + /3; p, 6o, ko ) 

where B(a, /3) denotes the beta function. The asymptotic behavior of A as k tends 
to 1 is treated in [8], where it is separated into two cases depending on whether 
or not ,t -/3 + 1/2 is an integer. The required approximation of the integral A in 
(1) is obtained from the tau method approximant of v(w) in conjunction with the 
identity 

_ (rDl7 (s) 
(5) jxr(1 x)s l dx - B(r, s)( 

2. TAU METHOD APPROXIMATION 

This method is based on the idea of an 'economized approximatioi' due to 
Lanczos [9, 10]. In what follows, the recursive formulation of the tau method 
is applied (see [11, 12]). The linear operator D acting on wTh (n > 0) yields 

DwJ = n w1 - (nAo + A1) wn + (nBO + B1) wn+1 - (nCO + Ci) wn+2. 

If Qi (w) is defined in such a way that D Qi = wi then by the linearity of D the 
above equation becomes 

Dwn = D [nQn-1 - (nAo + Al) Qn + (nBo + B1) Qn+1 - (nCO + Cl) Qn+2 l 

and this in turn leads to the recurrence relation 

(6) 
n Qn-1- (nAo + Al) Qn + (nBo + B1) Qn+? - (nCO + Cl) Qn+2 = Wn, 
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which generates the canonical polynomials Qn. Three special cases are to be con- 
sidered at this point: 

1. If Co 74 0, then {Qo, Q1, 1 WI ... v ,n-22} is the generating set for Qn, n > 2. 
2. If Co = 0 and nBo + B1 70 for all n > 0, then Qn is generated by the set 

{Q0) 1)J) . .. ,a n-1 I for n > 1. 
3. If Co = Bo = B1 = 0, then C, = 0 and'the generating set is {1,jW,... ,nj, 

n > 0. 

Let Tn* (w) denote the n-th Chebyshev polynomial defined on the unit interval 
with coefficients c() (j = 1,.. ., n) given by 

cn =K(_l)n+32231 n+J n+j- 

For a fixed positive integer N, we define the polynomial 
M N+v-i 

(7) V(g) = X, i E C(N+v-zi) Q. (g) 
0=O j=O0 

where v = 2, 1 or 0 according to the special cases 1-3, respectively. Hence V is an 
exact solution to the perturbed equation 

" 

(8) D V= E iTk+?-i 
i=o 

derived from (3) with the same initial condition V(O) = 1. The unknown 7 param- 
eters are determined from the initial condition on V and, if applicable, by setting 
the coefficients of Qo and/or Q, in (7) equal to zero. The resulting accuracy of 
V depends on how small these r parameters are, which in turn depends on the 
prescribed degree N. After some algebraic manipulations on (7), V is expressed in 
the form 

N 

(9) V(w) E an n, 
n=0 

in which ao = 1 while the other coefficients are given in terms of the constant 
parameters a, 3, A, . We now replace v in (1) with V and use (5) to get 

(10) 
1 ~~~~~~~N N (3 

X 

1(l _ 

) lV(w) d = E B(a,,: + n) an = B(al 13) E (-)ani 

where (O>n is the Pochhammer symbol. Then the desired approximation of (1) 
becomes 

(11) A')) (p, 6; k) B(a, 3) (1 + 6) -(1 - k ( / 3-2 an, 

and a comparison of this equation with (4) leads to the following approximation of 
Lauricella's function: 

(12) F(3 (3,A, + 1; a + 3;op, 6o, ko) )n n 
These approximations are valid for values of k < 1, and we need to resort to the 
asymptotic formulas for A as k -> 1 (see [8]). 
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3. NUMERICAL RESULTS 

We have used Mathematica [13] for the algebraic manipulations and to obtain 
numerical results. However, because of the extreme complexity of the algebraic 
expressions involved we were unable to present the relevant formulas in closed form. 
Therefore, it is more convenient to define the desired values for the parameters 
a, 3, A,..., etc., before computing the coefficients in the polynomial V(w) and, 
consequently, the approximate values of A in (11). To test the validity of the tau 
method, the special case where 6 = p = 0 and 3 = a-- is considered (case 3 
above); this leads to 

A(a' ,U)a) (O, O; k) = R,, (k, a, y), 

in which A plays an idle role. The elliptic-type integrals R were developed in [4, 6, 7]. 
For the case at hand, the canonical polynomials are given by 

j=-E i! Hko(j+!+1/2) WI mO > ,1 

and, according to (7), V(w) = To cn$) Qn (w) with 

(EN) n.! k1 - 1) : 
-[cn>+ 1;2)n+ (k2j)?1 

Two factors, namely k and ,u, determine the magnitude of T0, and hence the error 
v - V. As k approaches 1, the terms in the summation above come very close to 
zero, which leads to a large value for T regardless of the choice of N. On the other 
hand, for a fixed k < 1, large values of At also lead to large T but, nevertheless, 
this difficulty may be overcome by a proper choice of N, or by using the recursion 
relations on At [4], namely 

R, (k, a, y) -Y / 
p-2(,a y -( - 1/2)(1 - k4) R_2(k,a,y) 

(2A- -y- 1)(1+k2) (2At-2-y +2a- 1)k 2 

For k < 0.5 and a polynomial approximation of degree N = 6 our results are found 
to be in agreement with those tabulated in [6]. 

With the same degree of approximation N = 6, numerical values for the general 
case of A according to (11) are computed for different values of the parameters 
(Table 1). Moreover, keeping all the other parameters fixed, the behavior of A as 
k approaches 1 is noted for the cases where At - 13 + 1/2 is not an integer (Table 2), 
a positive integer (Table 3) and a negative integer (Table 4); the errors at k = 0.95 
are found to be, respectively, 1, 0.85 and 0.0014 . This is also evident from the 
increasing values of Irl as k approaches 1. 
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TABLE 1. Values of A as in (11) for different values of the parameters 

a 0.50 0.50 1.00 0.50 2.00 

13 0.50 1.00 0.50 2.00 0.50 

0.25 -0.75 -1.00 1.50 -0.50 
6 0.33 -0.50 -0.50 0.90 -0.33 

k 0.01 0.20 0.30 0.50 0.10 

A -2.00 1.00 1.33 -0.50 0.50 

A -3.50 1.50 2.00 -1.00 1.00 
p -0.25 0.66 0.66 -0.82 0.25 

ITO1 9.0 X 10-14 6.3 x 10-5 3.5 x 10-4 4.3 x 10-5 7.6 x 10-11 

11i 6.0 x 10-9 2.8 x 10-3 7.8 x 10-3 6.8 x 10-4 1.4 x 10-8 
1721 1.6 x 10-7 1.6 x 10-2 3.7 x 10-2 2.7 x 10-3 3.1 X 10-7 

A 3.871035 3.513762 2.355496 1.525855 1.183366 

a 1.00 1.50 1.50 1.00 2.00 

13 1.00 1.00 1.50 1.50 2.00 

0.50 -0.25 0.75 2.00 1.00 

6 0.33 -0.33 0.50 0.90 0.50 

k 0.10 0.01 0.20 0.66 0.30 

A -1.66 0.10 -1.33 -0.10 -1.10 

A -3.00 0.25 -2.00 -0.25 -1.50 
p -0.25 0.25 -0.66 -0.82 -0.66 

'To 5.0 x 10-11 4.0 x 10-13 3.7 x 10-8 1.2 x i0-4 1.9 X 10-7 

'-ri 2.3 x 10-8 7.3 x 10-9 3.0 x 10-6 1.3 x 10-3 7.0 x 10-6 

1 21 5.1 X 10-7 1.3 x 10-7 2.5 x 10-5 3.2 x 10-3 4.8 x 10-5 

A 1.139618 0.636796 0.502315 0.397895 0.188224 

TABLE 2. a = 1.5,/3 = 1,<y = -0.25,6 = -0.33,A = 0.1,A - 

0.25, p = 0.25, At -/3 + 1/2 =-0.25 non-integer 

k ITO I 1 I I721 A 
0.10 4.4 x 10-11 7.0 x 10-9 1.4 x 10-7 0.6376688 

0.30 7.7 x 10-1o 3.3 x 10-9 2.3 x 10-7 0.6456921 

0.50 8.0 X 10-8 2.8 x 10-7 1.1 X 10-5 0.6675759 

0.70 2.0 x 10-5 6.9 x 10-5 2.8 x 10-3 0.7209109 

0.90 3.6 x i03 1.2 x 10-2 5.1 x 10-1 0.8777903 

0.95 2.3 x 10-2 7.9 x 10-2 3.2 0.9503844 
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TABLE 3. a = 2, = 0.5, =y - 0.5,6 = -0.33, A 0.5,u = l,p 
0.25, At - / + 1/2 1 positive integer 

k ITO I 1 II21 A 

0.10 7.6 x 10-11 1.4 x 10-8 3.1 X 10-7 1.183366 

0.30 9.0 x 10-1O 9.7 x 10-9 '4.3 x 10-7 1.273127 

0.50 3.3 x 10-7 8.5 x 10-7 4.5 x 10-5 1.516813 

0.70 8.2 x 10-5 2.0 x 10-4 1.1 X 10-2 2.191343 

0.90 1.2 x 10-2 2.8 x 10-2 1.6 5.774337 

0.95 6.4 x 10-2 1.6 x 10-1 8.8 10.697969 

TABLE 4. a = 1.5, 3 = 1.5, a = 0.75,6 = 0.5, A = -1.33, = 

-2, p = -0.66, A - 3 + 1/2 = -3 negative integer 

k ITO I IT I I T2 A 

0.10 7.0 x 10-9 2.0 x 10-6 1.9 X 10-5 0.4995507 

0.30 1.3 x 10-7 5.3 x 10-6 3.9 x 10-5 0.5071118 

0.50 1.2 x 10-6 2.5 x 10-5 1.2 x 10-4 0.5240502 

0.70 1.2 x 10-5 1.9 X 10-4 5.8 x 10-4 0.5539706 

0.90 7.9 x 10-4 6.8 x 10-3 2.6 x 10-2 0.6021379 

0.95 9.0 X 10-3 5.6 x 10-2 5.4 x 10-1 0.6170454 
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